Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simulations of nucleation and early growth stages of protein crystals

Identifieur interne : 003D23 ( Main/Exploration ); précédent : 003D22; suivant : 003D24

Simulations of nucleation and early growth stages of protein crystals

Auteurs : A. M. Kierzek [Pologne] ; W. M. Wolf [Pologne] ; P. Zielenkiewicz [Pologne]

Source :

RBID : ISTEX:E84ACB7959453F34C0ED2F4DD980387ED729E232

English descriptors

Abstract

Analysis of known protein crystal structures reveals that interaction energies between monomer pairs alone are not sufficient to overcome entropy loss related to fixing monomers in the crystal lattice. Interactions with several neighbors in the crystal are required for stabilization of monomers in the lattice. A microscopic model of nucleation and early growth stages of protein crystals, based on the above observations, is presented. Anisotropy of protein molecules is taken into account by assigning free energies of association (proportional to the buried surface area) to individual monomer-monomer contacts in the lattice. Lattice simulations of the tetragonal lysozyme crystal based on the model correctly reproduce structural features of the movement of dislocation on the (110) crystal face. The dislocation shifts with the speed equal to the one determined experimentally if the geometric probability of correct orientation is set to 10(-5), in agreement with previously published estimates. At this value of orientational probability, the first nuclei, the critical size of which for lysozyme is four monomers, appear in 1 ml of supersaturated solution on a time scale of microseconds. Formation of the ordered phase proceeds through the growth of nuclei (rather then their association) and requires nucleations on the surface at certain stages.

Url:
DOI: 10.1016/S0006-3495(97)78094-9


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Simulations of nucleation and early growth stages of protein crystals</title>
<author>
<name sortKey="Kierzek, A M" sort="Kierzek, A M" uniqKey="Kierzek A" first="A. M." last="Kierzek">A. M. Kierzek</name>
</author>
<author>
<name sortKey="Wolf, W M" sort="Wolf, W M" uniqKey="Wolf W" first="W. M." last="Wolf">W. M. Wolf</name>
</author>
<author>
<name sortKey="Zielenkiewicz, P" sort="Zielenkiewicz, P" uniqKey="Zielenkiewicz P" first="P." last="Zielenkiewicz">P. Zielenkiewicz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E84ACB7959453F34C0ED2F4DD980387ED729E232</idno>
<date when="1997" year="1997">1997</date>
<idno type="doi">10.1016/S0006-3495(97)78094-9</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-DHK1SBG1-V/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000160</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000160</idno>
<idno type="wicri:Area/Istex/Curation">000160</idno>
<idno type="wicri:Area/Istex/Checkpoint">001499</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001499</idno>
<idno type="wicri:doubleKey">0006-3495:1997:Kierzek A:simulations:of:nucleation</idno>
<idno type="wicri:Area/Main/Merge">003D78</idno>
<idno type="wicri:Area/Main/Curation">003D23</idno>
<idno type="wicri:Area/Main/Exploration">003D23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Simulations of nucleation and early growth stages of protein crystals</title>
<author>
<name sortKey="Kierzek, A M" sort="Kierzek, A M" uniqKey="Kierzek A" first="A. M." last="Kierzek">A. M. Kierzek</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw</wicri:regionArea>
<wicri:noRegion>Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wolf, W M" sort="Wolf, W M" uniqKey="Wolf W" first="W. M." last="Wolf">W. M. Wolf</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw</wicri:regionArea>
<wicri:noRegion>Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zielenkiewicz, P" sort="Zielenkiewicz, P" uniqKey="Zielenkiewicz P" first="P." last="Zielenkiewicz">P. Zielenkiewicz</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw</wicri:regionArea>
<wicri:noRegion>Warsaw</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Biophysical Journal</title>
<title level="j" type="abbrev">BPJ</title>
<idno type="ISSN">0006-3495</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1997">1997</date>
<biblScope unit="volume">73</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="571">571</biblScope>
<biblScope unit="page" to="580">580</biblScope>
</imprint>
<idno type="ISSN">0006-3495</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-3495</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Accessible surface areas</term>
<term>Acta crystallogr</term>
<term>Additional nucleation</term>
<term>Aggregation</term>
<term>Atomic force microscopy observations</term>
<term>Atomic solvation parameters</term>
<term>Average number</term>
<term>Biophysical journal volume</term>
<term>Ccp4 suite</term>
<term>Central molecule</term>
<term>Classical nucleation theory</term>
<term>Cluster aggregation</term>
<term>Complex formation</term>
<term>Computer simulations</term>
<term>Constant speed</term>
<term>Crystal environment</term>
<term>Crystal face</term>
<term>Crystal growth</term>
<term>Crystal lattice</term>
<term>Crystal structure</term>
<term>Crystallization</term>
<term>Crystallization batch</term>
<term>Crystallization conditions</term>
<term>Crystallization process</term>
<term>Dimer</term>
<term>Dislocation</term>
<term>Early growth stages</term>
<term>Early stages</term>
<term>Electron microscopy</term>
<term>Entropic</term>
<term>Entropic cost</term>
<term>Entropic penalties</term>
<term>Entropic penalty</term>
<term>Entropic penalty value</term>
<term>Entropy loss</term>
<term>Experimental data</term>
<term>Experimental techniques</term>
<term>Flat surface</term>
<term>Flat surfaces</term>
<term>Form interactions</term>
<term>Free energies</term>
<term>Free energy</term>
<term>Georgalis</term>
<term>Good site</term>
<term>Good sites</term>
<term>Hydrodynamic radius</term>
<term>Interaction energies</term>
<term>Interaction energy</term>
<term>Interface</term>
<term>Intermolecular distance</term>
<term>Iteration</term>
<term>Janin</term>
<term>Larger complexes</term>
<term>Lattice</term>
<term>Lattice coordinates</term>
<term>Letter codes</term>
<term>Lower layer</term>
<term>Lysozyme</term>
<term>Lysozyme crystallization</term>
<term>Lysozyme solutions</term>
<term>Molecule</term>
<term>Monomer</term>
<term>Negative energies</term>
<term>Node</term>
<term>Nucleation</term>
<term>Orientational</term>
<term>Orientational probabilities</term>
<term>Orientational probability</term>
<term>Orientational states</term>
<term>Particular molecule</term>
<term>Piotr zielenkiewicz</term>
<term>Program iterations</term>
<term>Protein aggregation</term>
<term>Protein complexes</term>
<term>Protein crystallization</term>
<term>Protein crystallization kierzek</term>
<term>Protein data bank</term>
<term>Protein molecule</term>
<term>Protein molecules</term>
<term>Protein solutions</term>
<term>Qualitative behavior</term>
<term>Same orientational state</term>
<term>Schematic diagram</term>
<term>Several simulations</term>
<term>Simulation</term>
<term>Simulation steps</term>
<term>Single molecules</term>
<term>Solid phase</term>
<term>Specific interactions</term>
<term>Stable complexes</term>
<term>Stable nuclei</term>
<term>Stable tetramer</term>
<term>Step movement</term>
<term>Surface area</term>
<term>Surface areas</term>
<term>Symmetry operator</term>
<term>Symmetry operators</term>
<term>Tetragonal</term>
<term>Tetragonal lysozyme crystal</term>
<term>Tetramer</term>
<term>Time scale</term>
<term>Time scales</term>
<term>Time step</term>
<term>True number</term>
<term>Unit cell</term>
<term>Unit cells</term>
<term>Volume fraction</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Analysis of known protein crystal structures reveals that interaction energies between monomer pairs alone are not sufficient to overcome entropy loss related to fixing monomers in the crystal lattice. Interactions with several neighbors in the crystal are required for stabilization of monomers in the lattice. A microscopic model of nucleation and early growth stages of protein crystals, based on the above observations, is presented. Anisotropy of protein molecules is taken into account by assigning free energies of association (proportional to the buried surface area) to individual monomer-monomer contacts in the lattice. Lattice simulations of the tetragonal lysozyme crystal based on the model correctly reproduce structural features of the movement of dislocation on the (110) crystal face. The dislocation shifts with the speed equal to the one determined experimentally if the geometric probability of correct orientation is set to 10(-5), in agreement with previously published estimates. At this value of orientational probability, the first nuclei, the critical size of which for lysozyme is four monomers, appear in 1 ml of supersaturated solution on a time scale of microseconds. Formation of the ordered phase proceeds through the growth of nuclei (rather then their association) and requires nucleations on the surface at certain stages.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Kierzek, A M" sort="Kierzek, A M" uniqKey="Kierzek A" first="A. M." last="Kierzek">A. M. Kierzek</name>
</noRegion>
<name sortKey="Wolf, W M" sort="Wolf, W M" uniqKey="Wolf W" first="W. M." last="Wolf">W. M. Wolf</name>
<name sortKey="Zielenkiewicz, P" sort="Zielenkiewicz, P" uniqKey="Zielenkiewicz P" first="P." last="Zielenkiewicz">P. Zielenkiewicz</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003D23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:E84ACB7959453F34C0ED2F4DD980387ED729E232
   |texte=   Simulations of nucleation and early growth stages of protein crystals
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021